Top Vídeos

user45
6 vistas · 5 años hace

Sea otters aren't just cute -- they're a vivid example of life on the edge. Unlike whales and other ocean mammals, sea otters have no blubber. Yet they're still able to keep warm in the frigid Pacific waters. The secret to their survival? A fur coat like no other.

SUBSCRIBE to Deep Look: http://goo.gl/8NwXqt

Find out more about the sea otter's fantastic fur: http://goo.gl/kdPvWV

Check out UC Santa Cruz's Marine Mammal Physiology Project: http://goo.gl/ntwUHp

Find out what Monterey Bay Aquarium is doing to save Southen sea otters: http://goo.gl/bbnxm0

Funding for Deep Look is provided in part by PBS Digital Studios and the John S. and James L. Knight Foundation. Deep Look is a project of KQED Science, which is supported by HopeLab, The David B. Gold Foundation; S. D. Bechtel, Jr. Foundation; The Dirk and Charlene Kabcenell Foundation; The Vadasz Family Foundation; Smart Family Foundation and the members of KQED.

Happy #WorldOtterDay !
#deeplook

user45
7 vistas · 5 años hace

Their skeletons are prized by beachcombers, but sand dollars look way different in their lives beneath the waves. Covered in thousands of purple spines, they have a bizarre diet that helps them exploit the turbulent waters of the sandy sea floor.

Please follow us on Patreon! https://www.patreon.com/deeplook

SUBSCRIBE to Deep Look! http://goo.gl/8NwXqt

DEEP LOOK is a ultra-HD (4K) short video series created by KQED San Francisco and presented by PBS Digital Studios. See the unseen at the very edge of our visible world. Explore big scientific mysteries by going incredibly small.

Pristine white sand dollars have long been the souvenir to commemorate a successful day at the beach. But most people who pick them up don’t realize that they’ve collected the skeleton of an animal, washed up at the end of a long life.

As it turns out, scientists say there’s a lot to be said about a sand dollar’s life. That skeleton -- also known as a test -- is really a tool, a remarkable feat of engineering that allows sand dollars to thrive on the shifting bottom of the sandy seafloor, an environment that most other sea creatures find inhospitable.

“They've done something really amazing and different,” said Rich Mooi, a researcher with the California Academy of Sciences in San Francisco. “They’re a pile of novelties, and they’ve gone way off the deep end in modifying their bodies to adapt to where they live.”

Mooi studies echinoderms, a word that roughly translates to “hedgehog skin.” It’s an aptly-fitting name for a group that includes sea urchins, sand dollars, sea stars and sea cucumbers. But Mooi says sand dollars really have his heart, in part because of their incredible adaptations.

--- What are sand dollars?
Sand dollars belong to a group of animals called Echinoderms that includes some more familiar animals like starfish and sea urchins. Sand dollars are actually a type of flattened sea urchin with miniaturized spines and tube feet more suited to sandy seafloors.

--- What do sand dollars eat?
Sand dollars consume sand but they get actual nutrition from the layer of algae and bacteria that coat the grains, not the sand itself.

--- Are sand dollars alive? Why do they Turn White?
When sand dollars are alive, they are covered in tiny tube feet and spines that make them appear like fuzzy discs. When they die, they lose their spines and tube feet exposing their white skeleton that scientists call a test. That skeleton is typically what people find on the beach.

---+ Read the entire article on KQED Science:

https://www.kqed.org/science/1....932072/a-sand-dollar

---+ For more information:

Learn more about Chris Lowe’s work with plankton including sand dollars and their relatives
http://lowe.stanford.edu/

Rich Mooi’s research into sand dollars for California Academy of Sciences
https://www.calacademy.org/lea....rn-explore/science-h

---+ More Great Deep Look episodes:

The Amazing Life of Sand | Deep Look
https://youtu.be/VkrQ9QuKprE

For Pacific Mole Crabs It's Dig or Die | Deep Look
https://youtu.be/tfoYD8pAsMw

This Adorable Sea Slug is a Sneaky Little Thief | Deep Look
https://www.youtube.com/watch?v=KLVfWKxtfow&t=112s

---+ See some great videos and documentaries from PBS Digital Studios!

These Tiny Cells Shape Your Life | BrainCraft
https://www.youtube.com/watch?v=fnx-Qvx_fA8

What are Eye Boogers? | Reactions
https://www.youtube.com/watch?v=w3M8p-QCC7I

---+ Follow KQED Science:

KQED Science: http://www.kqed.org/science
Tumblr: http://kqedscience.tumblr.com
Twitter: https://www.twitter.com/kqedscience

---+ About KQED

KQED, an NPR and PBS affiliate in San Francisco, CA, serves Northern California and beyond with a public-supported alternative to commercial TV, Radio and web media.

Funding for Deep Look is provided in part by PBS Digital Studios. Deep Look is a project of KQED Science, which is supported by the Templeton Religion Trust and the Templeton World Charity Foundation, the S. D. Bechtel, Jr. Foundation, the Dirk and Charlene Kabcenell Foundation, the Vadasz Family Foundation, the Gordon and Betty Moore Foundation, the Fuhs Family Foundation Fund and the members of KQED.

---+ SHOUT OUTS

Here are the winners from our episode image quiz posted in our channel Community Tab:

https://www.youtube.com/channe....l/UC-3SbfTPJsL8fJAPK

?#1: Tektyx
Was the first to correctly ID the creature in our episode was a sand dollar.

?#2: tichu7
Was the first to ID what kind of sand dollar it was, the Pacific sand dollar.

?#3: Miguel Gomez
Also posted what kind of sand dollar it was was, but by another name: Eccentric sand dollar.

?#4: Gir Gremlin
The first viewer to identify the sand dollar by its scientific name: Dendraster excentricus!

user42
5 vistas · 5 años hace

I do not own copyright on any of the content of this video (music, pictures, etc.). This video was made for entertainment only and not for personal gain.

Ultravox' 2012 - Brilliant

1. Live 0:00
2. Flow 4:17
3. Brilliant 8:42
4. Change 13:06
5. Rise 17:37
6. Remembering 21:43
7. Hello 25:28
8. One 31:09
9. Fall 35:53
10. Lie 40:02
11. Satellite 44:39
12. Contact 48:39

Ultravox
Warren Cann – drums
Chris Cross – bass, synthesiser
Billy Currie – piano, violin, synthesiser
Midge Ure – vocals, guitar, synthesiser

user42
4 vistas · 5 años hace

Follow Ultravox:

Ultravox's Music Online: https://Ultravox.lnk.to/Listen
Subscribe: https://Ultravox.lnk.to/Subscribe
Website: https://Ultravox.lnk.to/Web
Facebook: https://Ultravox.lnk.to/FB
Instagram: https://Ultravox.lnk.to/IN
Twitter: https://Ultravox.lnk.to/TW

Lyrics:

When I was boy
There's a dream that I had
That a war if was fought
Was for good against bad
And I woke up to find
That the world had gone mad

And we'd all fall down

And I feel like a child again
Sitting or turning
You're toying with power
Your fingers are burning
You're pushing so hard
That the worlds won't be turning

We'll all fall down

When you try to pretend
That you're a god upon high
With your party ideals
And your squeaky clean lies
When it comes to the crunch
You're no smarter than I

And we'll all fall down

If it's colour of creed or all time religion
Well fighting for that shows
A pure lack of vision
The fight that we strive
Is a fight to survive

And we'll all fall down

Well look in the mirror
And what do you see
An American, Russian
A soldier or me
When you all press the buttons
Just where will you be?

When we all fall down

user42
3 vistas · 5 años hace

Follow Ultravox:

Ultravox's Music Online: https://Ultravox.lnk.to/Listen
Subscribe: https://Ultravox.lnk.to/Subscribe
Website: https://Ultravox.lnk.to/Web
Facebook: https://Ultravox.lnk.to/FB
Instagram: https://Ultravox.lnk.to/IN
Twitter: https://Ultravox.lnk.to/TW

Lyrics:

We were so young, we were too vain.
Dance in the dark, sing in the rain.
Time on our hands, hope in our hearts.

We were talking, passing strangers.
Moments caught across an empty room.
Wasted whispers, faded secrets.
Quickly passes, time goes, time goes by too soon.

We stood alone, silent and proud.
Moments unknown, lost in a crowd.
Running through memories like thieves in the night.
Clutching emotions, holding too tight.
Hold turns to dust, shattered by light.

We were talking, passing strangers.
Moments caught across an empty room.
Wasted whispers, faded secrets.
Quickly passes, time goes, time goes by too soon

We were talking, passing strangers.
Moments caught across an empty room.
Wasted whispers, faded secrets.
Quickly passes, time goes, time goes by too soon

We were talking, passing strangers.
Moments caught across an empty room.
Wasted whispers, faded secrets.
Quickly passes, time goes, time goes by too soon

user42
4 vistas · 5 años hace

Follow Ultravox:

Ultravox's Music Online: https://Ultravox.lnk.to/Listen
Subscribe: https://Ultravox.lnk.to/Subscribe
Website: https://Ultravox.lnk.to/Web
Facebook: https://Ultravox.lnk.to/FB
Instagram: https://Ultravox.lnk.to/IN
Twitter: https://Ultravox.lnk.to/TW

Lyric:

The lights went out (The last fuse blew).
The clocks all stopped (It can't be true).
The program's wrong (What can we do?).
The printout's blocked (It relied on you).

The turbine cracked up.
The buildings froze up.
The system choked up.
What can we do?

Please remember to mention me,
In tapes you leave behind.

We stood still.
We all stood still.
Still stood still.
We're standing still.

The screen shut down (There's no reply).
The lifts all fall (A siren cries).
And the radar fades (A pilot sighs).
As the countdowns stall (The readout lies).

The turbines cracked up.
The buildings froze up.
The system choked up.
What can we do?

Please remember to mention me,
In tapes you leave behind.

We stood still.
We all stood still.
Still stood still.
We're standing still.

The black box failed (The codes got crossed).
And the jails decayed (The keys got lost).
Everyone kissed (We breathe exhaust).
In the new arcade (Of the holocaust).

The turbine cracked up.
The buildings froze up.
The system choked up.
What can we do?

Plese remember to mention me,
In tapes you might leave behind.

We stood still.
We all stood still.
Still stood still.
We're standing still

user42
6 vistas · 5 años hace

Follow Ultravox:

Ultravox's Music Online: https://Ultravox.lnk.to/Listen
Subscribe: https://Ultravox.lnk.to/Subscribe
Website: https://Ultravox.lnk.to/Web
Facebook: https://Ultravox.lnk.to/FB
Instagram: https://Ultravox.lnk.to/IN
Twitter: https://Ultravox.lnk.to/TW

Lyric:

The sound is on the visions move
The image dance starts once again
They shuffle with a bovine grace and glide in syncopation
Just living lines from books we've read
With atmospheres of days gone by
With paper smiles
The screenplay calls a message for the nation

And those who sneer will fade and die
And those who laugh will surely fall
And those who know will always feel their backs against the thin wall
The thin wall
Thin wall

Grey men who speak of victory
Shed light upon their stolen life
They drive by night and act as if they're moved by unheard music
To step in time and play the part
With velvet voices smooth and cold
Their power games a game no more
And long the chance to use it

And those who dance will spin and turn
And those who wait will wait no more
And those talk will hear the word
And those who sneer will fade and die
And those who laugh will surely fall
And those who know will always feel their backs against the thin wall
The thin wall
Thin wall

The thin wall
The thin wall
The thin wall

And those who dance
The thin wall
And those who talk
The thin wall
And those who sneer
The thin wall
And those who laugh
The thin wall
And those who know
The thin wall
And those who dance
The thin wall
And those who wait
The thin wall
And those who talk

user42
9 vistas · 5 años hace

Ultravox perform Sleepwalk on Top of the Pops, 1980.
HD broadcast of SD content.

user42
11 vistas · 5 años hace

A couple of these tracks could already be found on youtube - here's the complete thing.
Ultravox! - such a great band while John Foxx was still part of it. They appropriately dropped the '!' afterwards, having become a totally different, utterly boring and ridiculous but -oh the irony of it!- extremely successful combo.

approx.timing :

01 - I want to be a machine - 00.00
02 - Slip away - 06.49
03 - Frozen ones - 11.00
04 - Distant smile - 15.22
05 - Young savage - 18.46
06 - My sex - 22.14
07 - Artificial life - 25.08 (fades in)
08 - Wide boys - 29.50
09 - Saturday night (in the city of the dead) - 32.38
10 - The wild, the beautiful and the damned - 35.35
11 - Rockwrok - 42.02
12 - Fear in the western world - 45.25 (incomplete - fades out)

user45
5 vistas · 5 años hace

Yep, you probably have Demodex mites living on your face. These tiny arachnids feast on sebum, the greasy oil in your pores. But should you be worried about your eight-legged guests?

SUBSCRIBE to Deep Look! http://goo.gl/8NwXqt
Please support us on Patreon! https://www.patreon.com/deeplook

DEEP LOOK is a ultra-HD (4K) short video series created by KQED San Francisco and presented by PBS Digital Studios. See the unseen at the very edge of our visible world. Explore big scientific mysteries by going incredibly small.

Pretty much every adult human alive has a population of these mites living on them.

Also called eyelash mites, they’re too small to see with the naked eye. They’re mostly transparent, and at about .3 millimeters long, it would take about five face adult mites laid end to end to stretch across the head of a pin.

Face mites spend their days face-down inside your hair follicles nestled up against the hair shaft.
They eat sebum, that greasy oil your skin makes to protect itself and keep it from drying out. That’s why the greasiest parts of your body — like around the eyes, nose and mouth — likely harbor a higher concentration of mites than other areas.

They live about two weeks. They spend most of their time tucked inside our pores. But while we’re sleeping, they crawl out onto the surface of our skin to mate before crawling back into our pores to lay their eggs. Fun!

--- How common are face mites?
Pretty much everyone has some face mites on them. Babies are born without them but quickly receive them from their parents through direct contact. The amount of mites may increase during puberty when the skin starts to produce more oil.

--- How do you get rid of face mites?
There’s usually no need to try to rid yourself of face mites as they typically don’t cause any symptoms and are nearly impossible to fully eradicate. Since female face mites can also reproduce asexually, it only takes one mite to repopulate your skin. Some people experience an overpopulation of face mites resulting in an inflammatory disease called demodicosis which is easy to recognize sue to the many small evenly-sized pimples that appear quickly. Consult a dermatologist if you think you may have symptoms.

--- What do face mites eat?

Face mites consume the greasy oil that you skin produces to protect itself.

---+ Read the entire article on KQED

https://www.kqed.org/science/1....941506/these-face-mi

---+ More Great Deep Look episodes:
How Lice Turn Your Hair Into Their Jungle Gym | Deep Look
https://www.youtube.com/watch?v=Yb26BBvAAWU&t=1s

How Ticks Dig In With a Mouth Full of Hooks | Deep Look
https://www.youtube.com/watch?v=_IoOJu2_FKE

---+ Shoutout!

?Congratulations? to jac lyn, Vanessa C u later, aspireme_95, Émile Julien, and Nono Chan who correctly identified the part of this animal that is, well… missing. Demodex lack an anus! Se the Community Tab post here: https://www.youtube.com/channe....l/UC-3SbfTPJsL8fJAPK

---+ Thank you to our Top Patreon Supporters ($10+ per month)!

Ahegao Comics, Allen, Aurora Mitchell, Beckie, Ben Espey, Bill Cass, Breanna Tarnawsky, Carlos Zepeda, Chris B Emrick, Chris Murphy, Companion Cube, Cooper Caraway, Daisuke Goto, Daniel Weinstein, David Deshpande, Edwin Rivas, Elizabeth Ann Ditz, Elizabeth Wolden, Ivan Alexander, Iver Soto, Jane Orbuch, JanetFromAnotherPlanet, Jason Buberel, Jeanine Womble, Jenn's Bowtique, Jeremy Lambert, Jiayang Li, Joao Ascensao, johanna reis, Johnnyonnyful, Joshua Murallon Robertson, Justin Bull, Karen Reynolds, Kristell Esquivel , KW, Kyle Fisher, Laurel Przybylski, Levi Cai, Lyall Talarico, Mario Rahmani, Marjorie D Miller, Mark Joshua Bernardo, Michael Mieczkowski, Monica Albe, Nathan Padilla, Nathan Wright, Pamela Parker, PM Daeley, Ricardo Martinez, Robert Amling, Robert Warner, Sayantan Dasgupta, Sean Tucker, Shelley Pearson Cranshaw, Shirley Washburn, SueEllen McCann, Tatianna Bartlett, Tea Torvinen, TierZoo, Tommy Tran, Two Box Fish, WhatzGames, Willy Nursalim

---+ Follow KQED Science and Deep Look:

Patreon: https://www.patreon.com/deeplook
Instagram: https://www.instagram.com/kqedscience/
Twitter: https://www.twitter.com/kqedscience
KQED Science on kqed.org: http://www.kqed.org/science
Facebook Watch: https://www.facebook.com/DeepLookPBS/

---+ About KQED

KQED, an NPR and PBS affiliate in San Francisco, CA, serves Northern California and beyond with a public-supported alternative to commercial TV, Radio and web media.

Funding for Deep Look is provided in part by PBS Digital Studios. Deep Look is a project of KQED Science, which is also supported by the National Science Foundation, the Templeton Religion Trust, the Templeton World Charity Foundation, the S. D. Bechtel, Jr. Foundation, the Dirk and Charlene Kabcenell Foundation, the Vadasz Family Foundation, the Gordon and Betty Moore Foundation, the Fuhs Family Foundation and the members of KQED.

#facemites #demodex #deeplook

user45
10 vistas · 5 años hace

Pollinator. Mason. Jeweler. A female blue orchard bee is a multitasking master. She fashions exquisite nests out of mud and pollen that resemble pieces of jewelry. And in the process, she helps us grow nuts and fruits.

SUBSCRIBE to Deep Look! http://goo.gl/8NwXqt
Please support us on Patreon! https://www.patreon.com/deeplook
The PBSDS survey is now close - thanks!

DEEP LOOK is a ultra-HD (4K) short video series created by KQED San Francisco and presented by PBS Digital Studios. See the unseen at the very edge of our visible world. Get a new perspective on our place in the universe and explore big scientific mysteries by going incredibly small.

* NEW VIDEOS EVERY OTHER TUESDAY! *

A new type of bee is buzzing through California's orchards. And researchers are hoping that the iridescent, greenish insect may help provide a more efficient way to pollinate nuts and fruits in an era when traditional honeybees have struggled.

Unlike honeybees, blue orchard bees don’t sting humans. And instead of building large colonies with thousands of worker bees caring for eggs laid by a queen bee, female blue orchard bees work alone to build their nests and stock them with food. They’re solitary bees, like most of the 4,000 species of bees in North America.

Blue orchard bees, which are native to the United States, are of increasing interest to scientists, government agencies and farmers for their ability to pollinate almonds, sweet cherries and other tree fruits more efficiently than honeybees.

“This is, I think, the moment for these bees to shine,” said entomologist Natalie Boyle, who studies blue orchard bees at the United States Department of Agriculture in Logan, Utah.

Boyle works with almond growers in California, whose crop is worth $5.2 billion a year and who rely heavily on honeybees to pollinate their orchards every February. Research has found that 400 female blue orchard bees are as effective at pollinating almonds as the more than 10,000 bees in a honeybee hive, said Boyle.

Between 40 and 50 percent of honeybee colonies die each year around the country, according to the yearly National Honey Bee Survey, carried out by universities with the sponsorship of the USDA and the California Almond Board, among others.

Finding other bees that could work side by side with honeybees could offer what Boyle calls “pollination insurance.”

--- What is a mason bee?
The blue orchard bee is a mason bee. Females build their nests out of mud that they collect with two huge pincer-like tools on their face called mandibles. In nature, they build their nests in places like hollow twigs. But they will also build them in pencil-wide drill holes in a wood block.

--- What makes blue orchard bees good pollinators?
One thing that makes blue orchard bees good pollinators are hairs on their abdomen called scopa, on which they collect and spread pollen. Blue orchard bees are particularly good at pollinating almonds and tree fruits like cherries and apples because they love foraging in their flowers. And they’re particularly well-suited to pollinate almonds, which are in bloom in February, when it’s chilly in California’s Central Valley, because they will fly around and forage at a cooler temperature than honeybees.

---+ Read the article on KQED Science:
https://www.kqed.org/science/1....928378/watch-this-be


---+ For more information:
Download the free book How to Manage the Blue Orchard Bee:
https://www.sare.org/Learning-....Center/Books/How-to-

---+ More Great Deep Look episodes:

This Vibrating Bumblebee Unlocks a Flower’s Hidden Treasure
https://www.youtube.com/watch?v=SZrTndD1H10

What Do Earwigs Do With Those Pincers Anyway?
https://www.youtube.com/watch?v=HuOnqWpIL9E

---+ See some great videos and documentaries from PBS Digital Studios!

PBS Eons: When Insects First Flew
https://www.youtube.com/watch?v=7QMcXEj7IT0

CrashCourse: The Plants & The Bees: Plant Reproduction - CrashCourse Biology #38
https://www.youtube.com/watch?v=ExaQ8shhkw8

---+ Follow KQED Science:

Instagram: https://www.instagram.com/kqedscience/
Twitter: https://www.twitter.com/kqedscience
KQED Science on kqed.org: http://www.kqed.org/science
Facebook Watch: https://www.facebook.com/DeepLookPBS/
Patreon: https://www.patreon.com/deeplook


---+ About KQED

KQED, an NPR and PBS affiliate in San Francisco, CA, serves Northern California and beyond with a public-supported alternative to commercial TV, radio and web media.

Funding for Deep Look is provided in part by PBS Digital Studios. Deep Look is a project of KQED Science, which is supported by the Templeton Religion Trust and the Templeton World Charity Foundation, the S. D. Bechtel, Jr. Foundation, the Dirk and Charlene Kabcenell Foundation, the Vadasz Family Foundation, the Gordon and Betty Moore Foundation, the Fuhs Family Foundation Fund and the members of KQED.

#deeplook #blueorchardbee #wildlifedocumentary

user45
9 vistas · 5 años hace

There's a story in every grain of sand: tales of life and death, fire and water. If you scooped up a handful of sand from every beach, you'd have a history of the world sifting through your fingers.

SUBSCRIBE to Deep Look! http://goo.gl/8NwXqt

DEEP LOOK: a new ultra-HD (4K) short video series created by KQED San Francisco and presented by PBS Digital Studios. See the unseen at the very edge of our visible world. Get a new perspective on our place in the universe and meet extraordinary new friends. Explore big scientific mysteries by going incredibly small.

* NEW VIDEOS EVERY OTHER TUESDAY! *

---+ How does sand form?

Sand can be anything that has been worn down until it’s reduced to some tiny, essential fragment of what it once was: a granite pebble from the mountains; coral from the sea; obsidian from a volcano; even skeletons of microscopic sea animals. It's also a technical term. Bigger than sand, that’s gravel, smaller? Silt.

By studying the composition and texture of sand, geologists can reconstruct its incredible life history. “There’s just a ton of information out there, and all of it is in the sand,” said Mary McGann, a geologist at the United States Geological Survey in Menlo Park, CA.

McGann recently took part in a comprehensive research project mapping sand’s journey into and throughout San Francisco Bay.

Patrick Barnard, another USGS geologist who helped oversee the project, said that it will help scientists understand how local beaches are changing over time. In particular, Barnard wants to understand why beaches just south of San Francisco Bay are among the most rapidly eroding beaches in the state.

From 2010-2012, Barnard and his team sampled beaches, outcrops, rivers and creeks to track sand’s journey around the bay. They even collected sand from the ocean floor. The researchers then carefully analyzed the samples to characterize the shapes, sizes, and chemical properties of the sand grains.

Barnard said the information provides a kind of fingerprint, or signature, for each sample that can then be matched to a potential source. For example, certain minerals may only come from the Sierra Mountains or the Marin Headlands.

“If we’ve covered all of the potential sources, and we know the unique signature of the sand from these different sources, and we find it on a beach somewhere, then we basically know where it came from,” explained Barnard.

And those species aren’t the only things finding their way into the sand. Manmade materials can show up there, too. McGann has found metal welding scraps and tiny glass spheres (commonly sprinkled on highways to make road stripes reflective) in sand samples from around the bay.

“All of these things can get washed into our rivers or our creeks, or washed off the road in storm drains,” explained McGann. “Eventually they end up in, for example, San Francisco Bay.”

By piecing together all of these clues – the information found in the minerals, biological material and man made objects that make up sand – the researchers ended up with a pretty clear picture of how sand travels around San Francisco Bay.

Some sands stay close to home. Rocky sand in the Marin Headlands comes from nearby bluffs, never straying far from its source.

Other sands travel hundreds of miles. Granite from the Sierra Nevada mountains careens down rivers and streams on a century-long sojourn to the coast.

In fact, much of the sand in the Bay Area comes from the Sacramento and San Joaquin rivers, with local watersheds also playing an important role in transporting sand to the beach.

Although this project focused on San Francisco Bay, the same techniques could be used to study other coastal systems, he added, revealing the incredible life stories of sand from around the world.

---+ More Deep Look episodes:

What Happens When You Zap Coral With The World's Most Powerful X-ray Laser?
https://youtu.be/aXmCU6IYnsA

These 'Resurrection Plants' Spring Back to Life in Seconds
https://youtu.be/eoFGKlZMo2g

--
Full article: http://blogs.kqed.org/science/....2014/11/04/the-amazi

---+ Follow KQED Science:

KQED Science: http://www.kqed.org/science
Tumblr: http://kqedscience.tumblr.com
Twitter: https://www.twitter.com/kqedscience

---+ About KQED

KQED, an NPR and PBS affiliate in San Francisco, CA, serves Northern California and beyond with a public-supported alternative to commercial TV, Radio and web media.

Funding for Deep Look is provided in part by PBS Digital Studios and the John S. and James L. Knight Foundation. Deep Look is a project of KQED Science, which is also supported by HopeLab, the David B. Gold Foundation, the S. D. Bechtel, Jr. Foundation, the Dirk and Charlene Kabcenell Foundation, the Vadasz Family Foundation, the Gordon and Betty Moore Foundation, the Smart Family Foundation and the members of KQED.
#deeplook

user45
8 vistas · 5 años hace

Support Deep Look on Patreon! https://www.patreon.com/deeplook

A baby hairworm hitches a ride inside a cricket, feasting on its fat until the coiled-up parasite is ready to burst out. Then it hijacks the cricket's mind and compels it to head to water for a gruesome little swim.

SUBSCRIBE to Deep Look! http://goo.gl/8NwXqt

DEEP LOOK is an ultra-HD (4K) short video series created by KQED San Francisco and presented by PBS Digital Studios. See the unseen at the very edge of our visible world. Explore big scientific mysteries by going incredibly small.

If you’re out on a hike and look down at a puddle, you might spot a long, brown spaghetti-shaped creature whipping around madly in a figure 8.

It’s a hairworm – also known as a horsehair worm or Gordian worm – and researchers have described 350 species around the world. Good news: It isn’t interested in infecting or attacking humans. But if you had happened on the puddle a few hours earlier, you might have witnessed a gruesome spectacle – the hairworm wriggling out of a cricket’s body, pushing its way out like the baby monster in the movie “Alien.”

How a hairworm ends up in a puddle, or another water source such as a stream, hot tub or a pet’s water dish, is a complex story. A young hairworm finds its way into a cricket or similar insect like a beetle or grasshopper, and once it’s grown into an adult, the parasite takes over its host’s brain to hitch a ride to the water.

As a result of the infection, crickets stop growing and reproducing. Male crickets infected by hairworms even lose their chirp, said Ben Hanelt, a biologist at the University of New Mexico who studies hairworms.

--- What *is* a hair worm?
A hair worm or hairworm – pick your spelling – is a nematomorph. Nematomorpha are a group of parasites. They’re long, thin worms that can grow to be several meters long inside their host.

--- Can humans be infected by hair worms?
There are reports of humans and cats and dogs being infected by hair worms, but hair worms aren’t after us or our pets because they can’t grow inside us, said Hanelt. They can only grow inside a host like a cricket or a related insect.

“What happens is that a dog, a cat, a human will ingest an adult (hair worm) somehow,” said Hanelt. “Could a cricket crawl in your sandwich before you take a bite? I don’t know. None of the studies that are out there talk about that. What they have been reported to do is to cause in many people intestinal distress.”

--- How do hair worms control crickets’ minds?
Scientists don’t understand the precise mechanism yet, but they believe that hairworms either boost chemicals in the crickets’ brains or pump chemicals into their brains.

---+ Read the entire article on KQED Science:
https://www.kqed.org/science/1....937775/these-hairwor

---+ For more information:

Hairworm Biodiversity Survey: http://www.nematomorpha.net

---+ More great Deep Look episodes:

Jerusalem Crickets Only Date Drummers
https://www.youtube.com/watch?v=mHbwC-AIyTE

How Mosquitoes Use Six Needles to Suck Your Blood
https://www.youtube.com/watch?v=rD8SmacBUcU

Identical Snowflakes? Scientist Ruins Winter For Everyone
https://www.youtube.com/watch?v=Gojddrb70N8

---+ Follow KQED Science:

Instagram: https://www.instagram.com/kqedscience/
Twitter: https://www.twitter.com/kqedscience
KQED Science on kqed.org: http://www.kqed.org/science
Facebook Watch: https://www.facebook.com/DeepLookPBS/
Patreon: https://www.patreon.com/deeplook

---+ Shoutout!
?Congratulations ? to Sushant Mendon who won our GIF CHALLENGE over at the Deep Look Community Tab: https://www.youtube.com/user/K....QEDDeepLook/communit

---+ About KQED

KQED, an NPR and PBS affiliate in San Francisco, CA, serves Northern California and beyond with a public-supported alternative to commercial TV, radio and web media.

Funding for Deep Look is provided in part by PBS Digital Studios. Deep Look is a project of KQED Science, which is also supported by the National Science Foundation, the Templeton Religion Trust, the Templeton World Charity Foundation, the S. D. Bechtel, Jr. Foundation, the Dirk and Charlene Kabcenell Foundation, the Vadasz Family Foundation, the Gordon and Betty Moore Foundation, the Fuhs Family Foundation and the members of KQED. #deeplook #hairworms #wildlife

user45
6 vistas · 5 años hace

Plenty of animals build their homes in oak trees. But some very teeny, tricky wasps make the tree do all the work. And each miniature mansion the trees build for the wasps' larvae is weirder and more flamboyant than the next.

SUBSCRIBE to Deep Look! http://goo.gl/8NwXqt

DEEP LOOK: a ultra-HD (4K) short video series created by KQED San Francisco and presented by PBS Digital Studios. See the unseen at the very edge of our visible world. Get a new perspective on our place in the universe and meet extraordinary new friends. Explore big scientific mysteries by going incredibly small.

* NEW VIDEOS EVERY OTHER TUESDAY! *

“What nerve!” you might say. What… gall! And you’d be right. The wasps are called gall-inducers.

---+ What do oak galls look like?

If you’ve ever spent a Summer or Fall around oak trees – such as the stalwart Valley Oak – Quercus lobata, or the stately Blue Oak, Quercus douglasii – you may be familiar with the large, vaguely fruity-looking objects clinging to the branches and leaves. Commonly called oak apples, these growths are the last thing you’d want to put in your mouth. They are intensely bitter, loaded with tannin compounds – the same compounds that in modest amounts give red wine its pleasant dryness, and tea its refreshing earthy tang.

That said, the oak apple’s powerful astringency has been prized for millennia. Tanning leather, making ink or dye, and cleaning wounds have been but a few of the gall’s historical uses.

But on closer inspection of these oaks – and many other plants and trees such as willows, alders, manzanitas, or pines – you can find a rogue’s gallery of smaller galls. Carefully peeking under leaves, along the stems and branches, or around the flower buds and acorns will likely lead you to unexpected finds. Smooth ones. Spiky ones. Long skinny ones, flat ones, lumpy, boxy ones. From the size of a golf ball down to that of a poppy seed. These structures wear shades of yellow, green, brown, purple, pink and red – and sometimes all of the above. A single tree may be host to dozens of types of gall, each one caused by a specific organism. And their shapes range from the sublime to the downright creepy. One tree may be encrusted with them, like a Christmas tree laden with ornaments and tinsel; and the next tree over may be almost completely free of galls. Why? It’s a mystery.

---+ How do oak galls form?

Galls are generally formed when an insect, or its larvae, introduce chemicals into a specific location, to push the plant’s growth hormones into overdrive. This can result in a great profusion of normal cells, increased size of existing cells, or the alteration of entire plant structures into new, alien forms.

Lots of creatures cause them; midges, mites, aphids, flies, even bacteria and viruses. But the undisputed champs are a big family of little wasps called Cynipids– rarely exceeding the size of a mosquito, a quarter of an inch in length.

“These tiny wasps cannot sting,” says Dr. Kathy Schick, Assistant Specialist/Curatorial Assistant at the Essig Museum of Entomology at UC Berkeley. “Gall-inducers are fascinating in that they are very specialized to their organ of the host plant.”

---+ What are oak galls?

These wasp houses are not homes exactly, but more akin to nurseries. The galls serve as an ideal environment for wasp larvae, whether it is a single offspring, or dozens. The tree is tricked into generating outsize amounts of soft, pillowy tissue inside each gall, on which the larvae gladly gorge themselves as they grow.


Full article: http://blogs.kqed.org/science/....2014/11/18/what-gall

---+ See more great videos and documentaries from the PBS Digital Studios!

It's Okay to Be Smart: Inside the World of Fire Ants!
https://youtu.be/rz3UdLEWQ60

Gross Science: Can Spider Venom Cure Erectile Dysfunction?
https://youtu.be/5i9X8h17VNM

---+ More Great Deep Look episodes:

These Lizards Have Been Playing Rock-Paper-Scissors for 15 Million Years
https://youtu.be/rafdHxBwIbQ

Stinging Scorpion vs. Pain-Defying Mouse
https://youtu.be/w-K_YtWqMro

---+ Follow KQED Science:

KQED Science: http://www.kqed.org/science
Tumblr: http://kqedscience.tumblr.com
Twitter: https://www.twitter.com/kqedscience

---+ About KQED

KQED, an NPR and PBS affiliate in San Francisco, CA, serves Northern California and beyond with a public-supported alternative to commercial TV, Radio and web media.

Funding for Deep Look is provided in part by PBS Digital Studios and the John S. and James L. Knight Foundation. Deep Look is a project of KQED Science, which is also supported by HopeLab, the David B. Gold Foundation, the S. D. Bechtel, Jr. Foundation, the Dirk and Charlene Kabcenell Foundation, the Vadasz Family Foundation, the Gordon and Betty Moore Foundation, the Smart Family Foundation and the members of KQED.
#deeplook

user45
8 vistas · 5 años hace

When it comes to spotting prey, sharks and rays have a secret sense beyond sight and smell. Tiny goo-filled organs called Ampullae of Lorenzini detect the invisible electric fields produced by all living creatures.

DEEP LOOK: a new ultra-HD (4K) short video series created by KQED San Francisco and presented by PBS Digital Studios. See the unseen at the very edge of our visible world. Get a new perspective on our place in the universe and meet extraordinary new friends. Explore big scientific mysteries by going incredibly small.

How do Sharks and Rays Sense Electric Fields?

Most animals don’t have the ability to detect electric fields. But sharks, rays, skates and sawfish — members of a group called Elasmobranchii — are masters of detecting electric signals. It’s one of their defining features. Elasmobranchs have specialized organs called Ampullae of Lorenzini. These tiny structures allow them to home in on weak bioelectric fields generated by nearby prey.

Elasmobranch’s electrosensory organs are named after a 17th century Italian physician, Stefano Lorenzini, who first identified them while dissecting an electric ray. Lorenzini noticed dozens of tiny pores around the animal’s mouth. Each of the pores led to jelly-filled canals that ended in pocket-like structures that he called ampullae, the Latin word for a type of round-bottomed flask.

Animals emit low frequency electric fields due to a process known as osmoregulation. This process allows the concentration of ions (charged atoms or molecules) to flow between the inside of our bodies and the outside. In order for our cells to stay intact, the flow of ions needs to be balanced.

But balanced doesn’t necessarily mean equal. The concentration of ions within a shrimp’s body is much lower than that of the sea water it swims in. Their voltage, or potential difference generated between the two concentrations across “leaky” surfaces, can then be detected by the ampullae.


More KQED SCIENCE:

Tumblr: http://kqedscience.tumblr.com
Twitter: https://www.twitter.com/kqedscience
KQED Science: http://ww2.kqed.org/science

---

Read the article for this video on KQED Science:
http://ww2.kqed.org/science/2015/08/11/sharks-and-rays-sense-electricity-fish-cant-hide/
#deeplook

user45
11 vistas · 5 años hace

Dermestid Beetles are fast and fastidious eaters. They can pick a carcass clean in just days leaving even the most delicate bone structures intact. This makes them the perfect tool for museum scientists-- if you keep them far, far away from valuable collections.

SUBSCRIBE: http://goo.gl/8NwXqt

In nature, Dermestid Beetles are death-homing devices. They’ll find a dead body about a week after death and lay eggs in the drying flesh. The larvae emerge with a voracious appetite, outgrowing their skins six to eight times in just days before pupating, becoming adults and flying away to start a new colony.

These Dermestid Beetles at the Museum of Vertebrate Zoology at UC Berkeley are direct descendants from the original colony established in this museum in 1924. The process now used at museums around the world was pioneered here. These are the beetles you see here in this flesh-eating beetles time lapse.

Scientists in the prep lab downstairs receive nearly a thousand carcasses a year. It’s their job to preserve each animal for long-term use in the collections upstairs. And the work is not for the squeamish.

What makes beetles ideal for cleaning museum specimens is that they’re fast and fastidious eaters. They can pick a carcass clean while leaving even the most delicate bone structures intact.

It takes a large beetle colony 24 – 48 hours to clean the bones of small animals like rabbits and owls, and they can work on 100 - 200 specimens at a time. Larger animals like deer or coyotes take about a week.

But the alliance between beetles and museum is an uneasy one. Downstairs the beetles are a critical tool. But if Dermestids got loose upstairs, they could wreak havoc in the library stacks, munching through specimen drawers and ruining entire collections.

--- More KQED SCIENCE:

Tumblr: http://kqedscience.tumblr.com
Twitter: https://www.twitter.com/kqedscience
KQED Science: http://ww2.kqed.org/science



---

More great DEEP LOOK episodes:

Where Are the Ants Carrying All Those Leaves?
https://www.youtube.com/watch?v=-6oKJ5FGk24

What Happens When You Put a Hummingbird in a Wind Tunnel?
https://www.youtube.com/watch?v=JyqY64ovjfY

Pygmy Seahorses: Masters of Camouflage
https://www.youtube.com/watch?v=Q3CtGoqz3ww

Related videos from the PBS Digital Studios Network!

Can Microbes Solve Murder Mysteries? - Gross Science
https://www.youtube.com/watch?v=kRUt9pqMCSg

The Surprising Ways Death Shapes Our Lives - BrainCraft
https://www.youtube.com/watch?v=Joalg73L_gw

Do Animals Mourn Their Dead? - It's Okay to Be Smart (ft. BrainCraft and Gross Science!)
https://www.youtube.com/watch?v=rHJDmMSKlHM

--- More KQED SCIENCE:

Tumblr: http://kqedscience.tumblr.com
Twitter: https://www.twitter.com/kqedscience
KQED Science: http://ww2.kqed.org/science


Funding for Deep Look is provided in part by PBS Digital Studios and the John S. and James L. Knight Foundation. Deep Look is a project of KQED Science, which is supported by HopeLab, The David B. Gold Foundation; S. D. Bechtel, Jr. Foundation; The Dirk and Charlene Kabcenell Foundation; The Vadasz Family Foundation; Smart Family Foundation and the members of KQED.
#deeplook #dermestids #dermestidbeetle

user45
9 vistas · 5 años hace

The Peruvian Amazon is a dangerous place when you're small. So the young Inga tree hires ants as bodyguards to protect its vulnerable leaves. Their pay: delicious nectar served up in tiny ant-sized dishes. But will the ants keep up their end of the bargain?

SUBSCRIBE to Deep Look! http://goo.gl/8NwXqt

DEEP LOOK is a ultra-HD (4K) short video series created by KQED San Francisco and presented by PBS Digital Studios. See the unseen at the very edge of our visible world. Get a new perspective on our place in the universe. Explore big scientific mysteries by going incredibly small.

* NEW VIDEOS EVERY OTHER TUESDAY! *

For some, ants are welcome guests. In the Amazon rainforest of Peru, a type of tree called the Inga actively encourages ants to stick around.

The tree, which is related to plants that produce beans and other legumes, grows tiny structures near the base of its leaves, called nectaries, that secrete a sugary fluid to feed to the ants. In turn, the ants serve as bodyguards, protecting the Inga and its nectaries from invading herbivores.

“Plants have all kinds of defenses, but because Inga leaves are not as toxic as many other plants,” says Suzanne Koptur, a professor of biology at Florida International University, “they’re good food for herbivores of all sizes and shapes, from big mammals like sloths and monkeys to little invertebrates like caterpillars.“

The rainforest is especially dangerous for young trees. The branches and leaves of mature trees merge together high in the air forming a canopy. Young trees on the forest floor struggle to get enough light. Young trees also have fewer leaves, and losing even a few to herbivores can threaten their survival.

They may be small, but few species want to tangle with the aggressive and territorial big-headed ants.

"Ants have powers in numbers, especially if they bite and sting," says Koptur.

The ants keep most herbivores, especially hungry caterpillars, away from the young trees. Simply put, the trees provide nectar to the ants in exchange for protection.

--- What is mutualism?

In biology, mutualism refers to a relationship between two organisms that benefits both of parties. Mutualism is one type of symbiotic relationship.


--- What are caterpillars?

Caterpillars are the larvae of butterflies and caterpillars. Young caterpillars hatch out of eggs, eat, grow and molt. They eventually pupate inside their cocoons and then emerge as winged adults.

--- What is plant nectar?

Nectar is a sugary liquid secreted by plants through structures called nectaries. Nectaries are commonly found in flowers to attract pollinators. Some plants also have extra-floral nectaries located outside of the flowers. To attract animals including ants and predatory wasps that protect the plant from herbivores.

---+ Read the entire article on KQED Science:

https://ww2.kqed.org/science/2....016/11/01/the-double


---+ For more information:

Interactions Among Inga, Herbivores, Ants, and Insect Visitors to Foliar Nectaries
http://faculty.fiu.edu/~koptur....s/pubs/MVbookIngaAnt

---+ More Great Deep Look episodes:

Winter is Coming For These Argentine Ant Invaders
https://www.youtube.com/watch?v=boyzWeHdtiI

Where Are the Ants Carrying All Those Leaves?
https://www.youtube.com/watch?v=-6oKJ5FGk24

This Vibrating Bumblebee Unlocks a Flower's Hidden Treasure
https://www.youtube.com/watch?v=-6oKJ5FGk24

---+ See some great videos and documentaries from the PBS Digital Studios!

It's Okay to Be Smart: Why Don't Ants Get Stuck In Traffic?
https://www.youtube.com/watch?v=kkiuw0HbRq4

Gross Science: The World's Most Expensive Fungus
https://www.youtube.com/watch?v=iV4WHFU2Id8

---+ Follow KQED Science:

KQED Science: http://www.kqed.org/science
Tumblr: http://kqedscience.tumblr.com
Twitter: https://www.twitter.com/kqedscience

---+ About KQED

KQED, an NPR and PBS affiliate based in San Francisco, serves the people of Northern California and beyond with a public-supported alternative to commercial media. Home to one of the most listened-to public radio station in the nation, one of the highest-rated public television services and an award-winning education program, KQED is also a leader and innovator in interactive media and technology, taking people of all ages on journeys of exploration — exposing them to new people, places and ideas.

Funding for Deep Look is provided in part by PBS Digital Studios and the John S. and James L. Knight Foundation. Deep Look is a project of KQED Science, which is also supported by HopeLab, the David B. Gold Foundation, the S. D. Bechtel, Jr. Foundation, the Dirk and Charlene Kabcenell Foundation, the Vadasz Family Foundation, the Gordon and Betty Moore Foundation, the Smart Family Foundation and the members of KQED. macro documentary
#deeplook

user45
8 vistas · 5 años hace

Humans aren’t the only creatures that get frustrated. Squirrels do too. One researcher wants to know, could there be an evolutionary benefit to losing your cool?

SUBSCRIBE to Deep Look! http://goo.gl/8NwXqt

DEEP LOOK is a ultra-HD (4K) short video series created by KQED San Francisco and presented by PBS Digital Studios. See the unseen at the very edge of our visible world. Get a new perspective on our place in the universe and meet extraordinary new friends. Explore big scientific mysteries by going incredibly small.

* NEW VIDEOS EVERY OTHER TUESDAY! *

YouTube viewers are well-acquainted with the squirrel genre: Thousands of videos that show squirrels going to great lengths to extract seeds from bird feeders (https://www.youtube.com/watch?v=FgDa_cpgHWs), or the old favorite, squirrels stuffing their cheeks (https://www.youtube.com/watch?v=_15UrPHkVQo).

Maybe squirrels are so popular because we see some of ourselves in them. This is part of what fueled Mikel Delgado’s interest in the fox squirrels she saw at the University of California, Berkeley. An animal behaviorist and doctoral student there, she likes to quote from Charles Darwin’s book “The Descent of Man, and Selection in Relation to Sex,” in which the English naturalist proposed that the differences between humans and other animals aren’t that clear-cut.

“It was controversial because people thought animals were machines and didn’t feel pain,” she said.

Inspired by Darwin, Delgado was intrigued by squirrels’ emotional worlds. The way to tell what they’re feeling, researchers have found, is to watch their tails. When threatened by a predator like a dog, a fox squirrel whips its tail in an s-shaped pattern that researchers call “flagging.”

Delgado wondered what else she could learn from watching squirrels flag their tails. For instance, do they get frustrated, the way that people do? So she devised an experiment to explore this question.

She taught some of the fox squirrels on campus to lift the lid of a plastic box to find a walnut inside. When the squirrel ate the nut, she dropped another one in. This way, she trained the squirrels to expect a walnut when they looked inside. This training was important because frustration is usually defined as not getting what you expect.

Then she replaced the walnut with corn – which squirrels don’t like as much – or left the box empty. These squirrels flagged their tails. For a third group, she locked the box. They flagged their tails the most. They got aggressive, a hallmark of frustration. And they bit, toppled and dragged the box, trying to open it.

That makes Delgado think that perhaps frustration has an evolutionary purpose, that it isn’t just for blowing off steam, but is instead a way to gather up energy to “brute-force” a solution.

--+ Is frustration an emotion?

“It’s a little bit controversial,” said Delgado. “It depends on who you talk to.”

Researchers don’t consider frustration one of the basic, or universal, emotions. In the 1960s, psychologist Paul Ekman identified six universal emotions: joy, anger, sadness, surprise, fear and disgust:

https://www.youtube.com/watch?v=-PFqzYoKkCc

Frustration is related to anger, but researchers don’t consider frustration a basic emotion. “There’s a question as to what exactly it is,” said Delgado. “Sometimes you see it described very specifically as a task: For example, when you expect a soda and you don’t get it from the vending machine. And sometimes you see it described as the response to the task.”

---+ Read the entire article on KQED Science:
https://ww2.kqed.org/science/2....016/09/20/watch-thes

---+ For more information:

The lab of Lucia Jacobs, where Mikel Delgado does her research: http://jacobs.berkeley.edu/

---+ More Great Deep Look episodes:

Can a New “Vaccine” Stem the Frog Apocalypse?
https://www.youtube.com/watch?v=-IXVcyCZVBg

These Crazy Cute Turtles Want Their Lake Back
https://www.youtube.com/watch?v=YTYFdpNpkMY

---+ See some great videos and documentaries from PBS Digital Studios!

BrainCraft: The Power of Sadness in Inside Out
https://www.youtube.com/watch?v=ST97BGCi3-w

PBS Idea Channel: 3 Fallacies For Election Season!
https://www.youtube.com/watch?v=REp4zCum3XY

---+ About KQED

KQED, an NPR and PBS affiliate in San Francisco, CA, serves Northern California and beyond with a public-supported alternative to commercial TV, Radio and web media.

Funding for Deep Look is provided in part by PBS Digital Studios and the John S. and James L. Knight Foundation. Deep Look is a project of KQED Science, which is also supported by HopeLab, the S. D. Bechtel, Jr. Foundation, the Dirk and Charlene Kabcenell Foundation, the Vadasz Family Foundation, the Gordon and Betty Moore Foundation, the Smart Family Foundation and the members of KQED.
#deeplook #squirrel #squirrelbehavior

user45
10 vistas · 5 años hace

Take the PBSDS survey: https://to.pbs.org/2018YTSurvey
Explore our VR slug and support us on Patreon! https://www.patreon.com/deeplook

Nudibranchs may look cute, squishy and defenseless ... but watch out. These brightly-colored sea slugs aren't above stealing weapons from their prey.

SUBSCRIBE to Deep Look! http://goo.gl/8NwXqt

DEEP LOOK is a ultra-HD (4K) short video series created by KQED San Francisco and presented by PBS Digital Studios. See the unseen at the very edge of our visible world. Explore big scientific mysteries by going incredibly small.

The summer months bring low morning tides along the California coast, providing an opportunity to see one of the state’s most unusual inhabitants, sea slugs.

Also called nudibranchs, many of these relatives of snails are brightly colored and stand out among the seaweed and anemones living next to them in tidepools.

“Some of them are bright red, blue, yellow -- you name it,” said Terry Gosliner, senior curator of invertebrate zoology and geology at the California Academy of Sciences in San Francisco. “They're kind of designer slugs.”

But without a protective shell, big jaws or sharp claws, how do these squishy little creatures get away with such flamboyant colors in a habitat full of predators?

As it turns out, the nudibranchs’ colors serve as a warning to predators: These sea slugs are packing some very sophisticated defenses. And some aren’t above stealing weapons from their prey.

Gosliner and Brenna Green and Emily Otstott, graduate students at San Francisco State University, were out at dawn earlier this summer searching tidepools and floating docks around the Bay Area. They want to learn more about how these delicate little sea slugs survive and how changing ocean temperatures might threaten their futures.

Nudibranchs come in a staggering variety of shapes and sizes. Many accumulate toxic or bad-tasting chemicals from their prey, causing predators like fish and crabs to learn that the flashy colors mean the nudibranch wouldn’t make a good meal.

--- What are nudibranchs?
Nudibranchs are snails that lost their shell over evolutionary time. Since they don’t have a shell for protection, they have to use other ways to defend themselves like accumulating toxic chemicals in their flesh to make them taste bad to predators. Some species of nudibranchs eat relatives of jellyfish and accumulate the stingers within their bodies for defense.

--- Why do nudibranchs have such bright colors?
The bright colors serve as a signal to the nudibranch’s predators that they are not good to eat. If a fish or crab bites a nudibranch, it learns to associate the bad taste with the bright colors which tends to make them reluctant to bite a nudibranch with those colors in the future.

--- What does nudibranch mean?
The word nudibranch comes from Latin. It means naked gills. They got that name because some species of nudibranchs have an exposed ring of gills on their back that they use to breath.

---+ Read the entire article on KQED Science:
https://www.kqed.org/science/1....929993/this-adorable

---+ For more information:

Learn more about Terry Gosliner’s work with nudibranchs
https://www.calacademy.org/sta....ff/ibss/invertebrate

Learn more about Chris Lowe’s work with plankton
http://lowe.stanford.edu/

Learn more about Jessica Goodheart’s study of nematocyst sequestration
https://onlinelibrary.wiley.co....m/doi/full/10.1111/i

---+ More Great Deep Look episodes:

From Drifter to Dynamo: The Story of Plankton | Deep Look
https://youtu.be/jUvJ5ANH86I

For Pacific Mole Crabs It's Dig or Die | Deep Look
https://youtu.be/tfoYD8pAsMw

The Amazing Life of Sand | Deep Look
https://youtu.be/VkrQ9QuKprE

---+ See some great videos and documentaries from PBS Digital Studios!

Why Are Hurricanes Getting Stronger? | Hot Mess
https://youtu.be/2E1Nt7JQRzc

When Fish Wore Armor | Eons
https://youtu.be/5pVTZH1LyTw

Why Do We Wash Our Hands After Going to the Bathroom? | Origin of Everything
https://youtu.be/fKlpGs34-_g

---+ Follow KQED Science and Deep Look:

Instagram: https://www.instagram.com/kqedscience/
Twitter: https://www.twitter.com/kqedscience
KQED Science on kqed.org: http://www.kqed.org/science
Facebook Watch: https://www.facebook.com/DeepLookPBS/
Patreon: https://www.patreon.com/deeplook

---+ About KQED

KQED, an NPR and PBS affiliate in San Francisco, CA, serves Northern California and beyond with a public-supported alternative to commercial TV, Radio and web media.

Funding for Deep Look is provided in part by PBS Digital Studios. Deep Look is a project of KQED Science, which is supported by the Templeton Religion Trust and the Templeton World Charity Foundation, the S. D. Bechtel, Jr. Foundation, the Dirk and Charlene Kabcenell Foundation, the Vadasz Family Foundation, the Gordon and Betty Moore Foundation, the Fuhs Family Foundation Fund and the members of KQED.

#deeplook #nudibranch #seaslug




Showing 73 out of 178